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A (very) brief history of voxels

 Rings a bell?

Comanche (Novalogic) 

Outcast (Appeal Software)
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Voxel Engines in Special effects 

 Natural representation
 Fluid, smoke, scans

 Volumetric phenomena
 Semi-transparency

 Unified rendering 
representation
 Particles, meshes, fluids…

Lord of the Rings, Digital Domain

The Day After Tomorrow, Digital Domain

XXX, Digital Domain



Voxels in video games ?

 Renewed interest

 Jon Olick, Siggraph 08

 John Carmack
[Olick08] 

Jon Olick, 

John Carmack



Why bother with voxels?

 Exploding number of triangles

 Sub-pixel triangles not GPU-friendly

(might improve but not yet REYES pipeline)

 Filtering remains an issue

 Multi-sampling expensive

 Geometric LOD ill-defined

 Clouds, smoke, fluids, etc.

 Participating media?
The Mummy 3, Digital Domain/Rhythm&Hues



Voxels

 Natural for complex geometries
 LOD defined 

 “Unique Geometry” (no additional authoring)

 Structured data
 Convenient to traverse

 But:
 Memory is a key issue!

○ E.g.   2048 ^ 3 x RGBA = 32 GB!!!
○ Transfer CPU  GPU expensive

 No fast renderer available



GigaVoxels

 I3D2009 paper [CNLE09]

 Unified geometry & volumetric 

phenomena

 Full pipeline to render 

infinite resolution voxel

objects/scenes



GigaVoxels pipeline
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[BNMBC08]







GigaVoxels Data Structure
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Sparse Voxel MipMap Pyramid

 Composed structureData structure

Generalized Octree

• Empty space compaction

Bricks of voxels

• Linked by octree nodes

• Store opacity, color, normal

Tower model courtesy of Erklaerbar, made with 3DCoat



Brick pool
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GigaVoxels Rendering
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Hierarchical Volume Ray-Casting

 Render semi-transparent 

materials

 Participating medias

 Emission/Absorption model 

for each ray

 Accumulate Color intensity + 

Alpha

 Front-to-back

○ Stop when opaque



Hierarchical Volume Ray-Casting

 Volume ray-casting 

[Sch05, CB04, LHN05a, Olick08, GMAG08, CNLE09]

 Big CUDA kernel

 One thread per ray

 KD-restart algorithm

 Ray-driven LOD



Volume Ray-Casting
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Rendering costs





Volume MipMapping mechanism

Problem: LOD uses 
discrete downsampled
levels

 Popping + Aliasing

 Same as bilinear only for 
2D textures

 Quadrilinear filtering

 Geometry is texture 

 No need of multi-
sampling (eg. MSAA)

L0

L1

L2

L3

MipMap zones MipMap pyramid





GigaVoxels Data Management
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1

Incremental octree update

 Progressive loading
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Ray-based visibility & queries

Zero CPU intervention

 Per ray frustum and visibility culling

On-chip structure management

 Subdivision requests

○ LOD adaptation

 Cache management

○ Remove CPU synchronizations



GigaVoxels Data Management
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SVMP cache

 Two caches on the GPU

 Bricks

 But also tree

 No maximal tree size



Usage sorted nodes addresses

Oldest Newest

SVMP caches

 GPU LRU (Least Recently Used)
 Track elements usage

 Maintain list with least used in front

Octree/Bricks Pool

Cache Elements (Node Tile/Brick)

Stream 

compaction

Used nodes mask

Stream 

compaction

Concatenate

New elements

New data



 Minimum amount of data is loaded

 Fully compatible with secondary rays and 
exotic rays paths

 Reflections, refractions, shadows, 
curved rays, …

Just-in-Time Visibility Detection





Voxel sculpting

 Direct voxel scultping

 3D-Coat

○ Like ZBrush

 Generate a lot of details





Voxel data synthesis

 Instantiation

 Recursivity

 Infinite details





Free voxel objects instancing

 BVH based structure
 Cooperative ray packet traversal [GPSS07]

 Shared stack

 WA-Buffer
 Deferred compositing







Cool Blurry Effects

 Going further with 3D MipMapping
 Full pre-integrated versions of objects

 Idea: Implements blurry effects very 
efficiently
 Without multi-sampling

 Soft shadows

 Depth of field 

 Glossy reflections…



Let’s look more closely at what we are doing…

 For a given pixel:
 Approximate cone 

integration
○ Using pre-integrated data

○ With only one ray !

 Voxels can be modeled as 
spheres
 Sphere size chosen to match 

the cone
○ Linear interpolation between 

mipmap levels

 Samples distance d
 Based on voxels/spheres 

size

Image 

Plane Cubical voxel

footprint

One pixel 

footprint

Pixel Color+Alpha



Soft shadows

 Launch secondary rays

 When ray hit object surface

 Same model as primary rays

 MipMap level chosen to 

approximate light source cone

 Compatible with our cache 

technique

 Resulting integrated opacity

 Approximated occlusion

Light source

Occluder





Depth-Of-Field

 Similarly for depth-
of-field…

 MipMap leveld
based on circle-of-
confusion size

Lens

Image 

plane

Apperture

Plane in 

focus

Illustration courtesy of GPU Gems





Conclusion

 Unlimited volume data at interactive rates

 Minimal CPU intervention

 Several game techniques can benefit from 

our algorithm



Many thanks go to …

 Digisens Corporation

 Rhone-Alpes Explora’doc program

 Cluster of Excellence on Multimodal 

Computing and Interaction (M2CI)

 3D-Coat and Rick Sarasin

 Erklaerbar



Any questions ?







But there is a little problem…

 Let’s see more closely what 
we are doing:
 Approximate cone integration

○ Using pre-integrated data

 But the integration function is 
not the good one !
 Emi/Abs model used along rays

○ But pre-integration is a simple 
sum

 Result: 
 Occluding objects are 

merged/blended

 Virtually not noticeable for little 
ray-steps

Image 
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Cubical voxel

footprint

One pixel 

footprint



Emission/Absorption model

 Equation of transfer
 q : Source term

 Kappa: absorption



What we would like

 Tangential integration: Sum

 Depth integration: Equation of transfer

 But still avoiding multi-sampling

 Is it commutative ? Not sure how far we can 

approximate like this…



Possible solutions

 Anisotropic pre-integration
 Similar to early anysotropic

filtering methods

 “2D” mipmapping
○ 1 axis kept unfiltered

 Interpolate between axis at 
runtime

 Problems: 
 Storage

 Sampling cost !



Possible solutions

 Full Anisotropic pre-integration
 Pre-integrate both parts

○ Light-Transmitance

○ Screen-space average

 Interpolate between axis at 
runtime

 Problems: 
 Storage !

 We would like to stay 
anisotropic…
 Or to reduce storage problem



Possible solutions

 Spheres subtraction

 Problem:

 Sampling cost

 Any better idea ? 



Lighting problem

 How to pre-filter lighting ?

 Pre-filter Normals

○ How to store them ?

○ How to interpolate them ?

○ Lobes de normales ?

 Compute gradients on the fly ?














