2

,/.*J o ¥

f\r\/\f

\GGRIXPH

.

"% S

M
= Dt

A (very) brief history of voxels

@ Rings a bell?

E-;.F"_-‘

- .H--u-
r —I—
SPEED:133
" F1 0 LFE 0| F3 I | F1 0 | FA /| F9 |
ca 11 BEELAR™ ' |EHHFF:E'—I
na o F v " FLARE:2Y
0006, ¢]
HELLFIEE | F4 A L FS § L FB | Fi0 | | Fi1 | TFIT)

Comanche (Novalogic)

Outcast (Appeal SORMEREE =S,

«l'ittp:llw

illustration

courtesy of “Real-Time
Volume Graphics”

Voxel grid

Voxel Engines in Special effects

@ Natural representation
e Fluid, smoke, scans

® Volumetric phenomena
e Semi-transparency

® Unified rendering
representation

o Particles, meshes, fluids...

XXX, Digital Domain

Voxels in video games ?

® Renewed interest
e Jon Olick, Siggraph 08
e John Carmack

Why bother with voxels?

@ Exploding number of triangles

» Sub-pixel triangles not GPU-friendly
(might improve but not yet REYES pipeline)

@ Filtering remains an issue
* Multi-sampling expensive
» Geometric LOD ill-defined

@ Clouds, smoke, fluids, etc.
» Participating media?

Voxels

Natural for complex geometries
LOD defined
“Unique Geometry” (no additional authoring)

Structured data
Convenient to traverse

But:

Memory Is a key issue!
E.g. 2048 "3 x RGBA=32 GB!!!
Transfer CPU <& GPU expensive
No fast renderer available

GigaVoxels

@ 13D2009 paper [CNLEQ9]

» Unified geometry & volumetric
phenomena

@ Full pipeline to render
Infinite resolution voxel
objects/scenes

. -— |} _— n _— |} —_— n _—— [} —_— n _— H »

producer

N\

[BNMBCOS]

2 ‘7_'\ v

A

3 -

" g

i g .a;& e ey
way <\S.) .y

A SN

R Mk

i,

49
A W '
ik
o
4% D

GigaVoxels Data Structure

i) CPU

Sparse Voxel MipMap Pyramid

Generalized Octree Bricks of voxels

- Empty space compaction * Linked by octree nodes
 Store opacity, color, normal

Mip-Map Pyramid with

N3-Tree stored bricks

Tower model courtesy of Erklaerbar, made with 3DCoat

Octree of Voxel Bricks

il

Linear
Memory

Node pool

- One child pointer

- Compact structure
- Cache efficient Brick pool

CUDA 3D Array (Texture)

. -— |} _— n _— |} —_— n _—— [} —_— n _— H »

GigaVoxels Rendering

!n-!ISC

data
producer

CPU

Hierarchical Volume Ray-Casting

® Render semi-transparent
materials

» Participating medias

® Emission/Absorption model
for each ray

* Accumulate Color intensity +
Alpha

* Front-to-back
Stop when opaque

Hierarchical Volume Ray-Casting

Volume ray-casting
[Sch05, CB04, LHNO5a, Olick08, GMAGO08, CNLEQ9]

Big CUDA kernel
One thread per ray
KD-restart algorithm
Ray-driven LOD

Volume Ray-Casting

Tree
Descent

Ray traversal

Brick
Marching

Brick Brick Per-ray LOD
Marching Marching evaluation

Volume MipMapping mechanism

Problem: LOD uses
discrete downsamp|ed MipMap zones MipMap pyramid
levels
* Popping + Aliasing
e Same as bilinear only for

2D textures

=>» Quadrilinear filtering

® Geometry is texture ©

* No need of multi-
sampling (eg. MSAA)

GigaVoxels Data Management

ot) CPU

Incremental octree update

@ Progressive loading

b
™

Pass 1
P ey
-=-=>
Pass 2
(Constant value) o
S HE EE HE
o+ HH HE HR
g
(Node not
paSS a reached)

Brick pool

Ray-based visibility & queries

Zero CPU intervention
Per ray frustum and visibility culling

On-chip structure management

Subdivision requests
LOD adaptation

Cache management
Remove CPU synchronizations

GigaVoxels Data Management

SVMP cache

Two caches on the GPU
Bricks
But also tree

= No maximal tree size

SVMP caches

® GPU LRU (Least Recently Used)

* Track elements usage

e Maintain list with least used in front

Cache Elements (Node Tile/Brick)

New data

Octree/Bricks

Pool

Oldest Newest

Usage sorted nodes addresses

%du\setémmlﬁs mask
|| | | ||
Stream Stream @
compaction compaction

ML
Concatenate ./

Just-in-Time Visibility Detection

® Minimum amount of data is loaded

: Z) - Ny
.!\; &€ -“T:’ " .}"‘
eSS TG ' E
3 “‘7-“04“ J % e 2. 2
MG Y J* ! Y
‘?{ .»" ‘f TR L
'\"4’ » - A
B e e 2

@ Fully compatible with secondary rays and
exotic rays paths

® Reflections, refractions, shadows,
curved rays, ...

ELS IN VIDEO
GAMES

Voxel data synthesis

® Instantiation
(No (No

o oo o O
© O

® Recursivity
o Infinite detalls @

@ ® O

Cool Blurry Effects

Going further with 3D MipMapping
Full pre-integrated versions of objects

ldea: Implements blurry effects very
efficiently
Without multi-sampling

Soft shadows
Depth of field
Glossy reflections...

Let’s look more closely at what we are doing...

@ For a given pixel:
* Approximate cone
Integration
Using pre-integrated data
With only one ray !

® Voxels can be modeled as
spheres

e Sphere size chosen to match
the cone

Linear interpolation between > <
mipmap levels footprint

Image

® Samples distance d Plane

* Based on voxels/spheres
Slze Pixel +Alpha

Cubical voxel
footprint

Soft shadows

® Launch secondary rays Light source
» When ray hit object surface ’)? Yy
® Same model as primary rays }//,
» MipMap level chosen to b
approximate light source cone %@'

=

» Compatible with our cache *
technique Q

@ Resulting integrated opacity
* Approximated occlusion

Depth-Of-Field

Similar Iy for de pt h- I;T:'?{/,’T’i’f{'
of-field. .. |t

MipMap leveld pifieel "N
b a.S e d O n CI rC | e = Of- \}-"\»\.‘__. T/./_ / il C - Circle of Confusion

. - < X A - Aperture
& F - Focal Length
confusion size
D - Object Distance
I - Image Distance
lllustration courtesy of GPU Gems

. Focal Point

Lens _
Plane in
Image

focus
>\// -

Apperture

Conclusion

Unlimited volume data at interactive rates
Minimal CPU intervention

Several game technigues can benefit from
our algorithm

Many thanks go to ...

Digisens Corporation
Rhone-Alpes Explora’doc program

Cluster of Excellence on Multimodal
Computing and Interaction (M2Cl)

3D-Coat and Rick Sarasin
Erklaerbar

FOR YOUR ATTENTI

TO ADDRESS

But there is a little problem...

® Let's see more closely what
we are doing:

* Approximate cone integration
Using pre-integrated data

@ But the integration function is
not the good one !

 Emi/Abs model used along rays

But pre-integration is a simple
sum

® Result;

* Occluding objects are
merged/blended

 Virtually not noticeable for little
ray-steps

Cubical voxel
footprint

Emission/Absorption model

Equation of transfer
g : Source term
Kappa: absorption

I(s) = I(s0) ™09 4 [q(s) e ds,

50

with optical depth

&2

7(51, 52) =/; k(s)ds.

'1

What we would like

@ Tangential integration: Sum
@ Depth integration: Equation of transfer

@ But still avoiding multi-sampling

e |s it commutative ? Not sure how far we can
approximate like this...

Possible solutions

Anisotropic pre-integration
Similar to early anysotropic
filtering methods
“2D" mipmapping

1 axis kept unfiltered

Interpolate between axis at
runtime

Problems:
Storage
Sampling cost !

an

> <
> <

Y

Possible solutions

@ Full Anisotropic pre-integration

* Pre-integrate both parts
Light-Transmitance
Screen-space average

@ Interpolate between axis at
runtime

® Problems:
e Storage !

® We would like to stay
anisotropic...

* Or to reduce storage problem

Possible solutions

Spheres subtraction

Problem:
Sampling cost

Any better idea ?

Lighting problem

How to pre-filter lighting ?
Pre-filter Normals
How to store them ?
How to interpolate them ?
Lobes de normales ?

Compute gradients on the fly ?

