
Cyril Crassin, Fabrice Neyret,

INRIA Rhône-Alpes & Grenoble Univ.

Sylvain Lefebvre, Elmar Eisemann, Miguel Sainz

INRIA Sophia-Antipolis Saarland Univ./MPI NVIDIA Corporation

GigaVoxels Effects In Video Games

A (very) brief history of voxels

 Rings a bell?

Comanche (Novalogic)

Outcast (Appeal Software)

V
o

x
e
l

g
ri
d

ill
u

s
tr

a
ti
o

n

c
o

u
rt

e
s
y

o
f

“R
e
a
l-

T
im

e

V
o

lu
m

e
G
ra
p
h
ic
s
”

Voxel Engines in Special effects

 Natural representation
 Fluid, smoke, scans

 Volumetric phenomena
 Semi-transparency

 Unified rendering
representation
 Particles, meshes, fluids…

Lord of the Rings, Digital Domain

The Day After Tomorrow, Digital Domain

XXX, Digital Domain

Voxels in video games ?

 Renewed interest

 Jon Olick, Siggraph 08

 John Carmack
[Olick08]

Jon Olick,

John Carmack

Why bother with voxels?

 Exploding number of triangles

 Sub-pixel triangles not GPU-friendly

(might improve but not yet REYES pipeline)

 Filtering remains an issue

 Multi-sampling expensive

 Geometric LOD ill-defined

 Clouds, smoke, fluids, etc.

 Participating media?
The Mummy 3, Digital Domain/Rhythm&Hues

Voxels

 Natural for complex geometries
 LOD defined

 “Unique Geometry” (no additional authoring)

 Structured data
 Convenient to traverse

 But:
 Memory is a key issue!

○ E.g. 2048 ^ 3 x RGBA = 32 GB!!!
○ Transfer CPU  GPU expensive

 No fast renderer available

GigaVoxels

 I3D2009 paper [CNLE09]

 Unified geometry & volumetric

phenomena

 Full pipeline to render

infinite resolution voxel

objects/scenes

GigaVoxels pipeline

GPU

CPU

Sparse Voxel

Octree

Mipmap

Pyramid

On-disc

data

producer

Now implemented with

Update structure

GPU

Cache

manager

Output ImageVoxel Ray-

Tracer

[BNMBC08]

GigaVoxels Data Structure

Sparse Voxel

Octree

MipMap

Pyramid

GPU

CPU

Update structure

Output ImageRay-Tracer

GPU

Cache

manager

On-disc

data

producer

Sparse Voxel MipMap Pyramid

 Composed structureData structure

Generalized Octree

• Empty space compaction

Bricks of voxels

• Linked by octree nodes

• Store opacity, color, normal

Tower model courtesy of Erklaerbar, made with 3DCoat

Brick pool

C
U

D
A

 3
D

 A
rr

a
y
 (

T
e
x
tu

re
)

Node pool

L
in

e
a
r

M
e
m

o
ry

Octree of Voxel Bricks

• One child pointer

• Compact structure

• Cache efficient

1

1 2 3 4 5

4 5

2 3

GPU

GigaVoxels Rendering

GPU

CPU

Update structure

Output ImageGigaVoxels

Ray-Tracer

Sparse Voxel

Octree

Pyramid

GPU

Cache

manager

On-disc

data

producer

Hierarchical Volume Ray-Casting

 Render semi-transparent

materials

 Participating medias

 Emission/Absorption model

for each ray

 Accumulate Color intensity +

Alpha

 Front-to-back

○ Stop when opaque

Hierarchical Volume Ray-Casting

 Volume ray-casting

[Sch05, CB04, LHN05a, Olick08, GMAG08, CNLE09]

 Big CUDA kernel

 One thread per ray

 KD-restart algorithm

 Ray-driven LOD

Volume Ray-Casting

1

2 3

4 5

6 7 8 9

1

2

4 5

6 7

3

Tree

Descent

Brick

Marching

Brick

Marching

Brick

Marching

Skip

Node

Per-ray LOD

evaluation

Ray traversal

Rendering costs



Volume MipMapping mechanism

Problem: LOD uses
discrete downsampled
levels

 Popping + Aliasing

 Same as bilinear only for
2D textures

 Quadrilinear filtering

 Geometry is texture 

 No need of multi-
sampling (eg. MSAA)

L0

L1

L2

L3

MipMap zones MipMap pyramid

GigaVoxels Data Management

GPU

CPU

Update structure

Output ImageVoxel Ray-

Tracer

Sparse Voxel

Octree

Pyramid

GPU

Cache

manager

On-disc

data

producer

1

Incremental octree update

 Progressive loading

1

2 3

4 5

Pass 2

Pass 3Pass 4

Wrong LOD

Wrong LOD

1 2 3 4 5

N
o

d
e

 p
o

o
l

B
ri
c
k
 p

o
o

l

Data

request

2 3
Data

requests

4

Data

request

(Constant value)

(Max opacity)

Pass 1

(Node not

reached)
(LoD OK)

No Data

Ray-based visibility & queries

Zero CPU intervention

 Per ray frustum and visibility culling

On-chip structure management

 Subdivision requests

○ LOD adaptation

 Cache management

○ Remove CPU synchronizations

GigaVoxels Data Management

GPU

CPU

Update structure

Output ImageVoxel Ray-

Tracer

Sparse Voxel

Octree

Pyramid

GPU

Cache

manager

On-disc

data

producer

SVMP cache

 Two caches on the GPU

 Bricks

 But also tree

 No maximal tree size

Usage sorted nodes addresses

Oldest Newest

SVMP caches

 GPU LRU (Least Recently Used)
 Track elements usage

 Maintain list with least used in front

Octree/Bricks Pool

Cache Elements (Node Tile/Brick)

Stream

compaction

Used nodes mask

Stream

compaction

Concatenate

New elements

New data

 Minimum amount of data is loaded

 Fully compatible with secondary rays and
exotic rays paths

 Reflections, refractions, shadows,
curved rays, …

Just-in-Time Visibility Detection

Voxel sculpting

 Direct voxel scultping

 3D-Coat

○ Like ZBrush

 Generate a lot of details

Voxel data synthesis

 Instantiation

 Recursivity

 Infinite details

Free voxel objects instancing

 BVH based structure
 Cooperative ray packet traversal [GPSS07]

 Shared stack

 WA-Buffer
 Deferred compositing



Cool Blurry Effects

 Going further with 3D MipMapping
 Full pre-integrated versions of objects

 Idea: Implements blurry effects very
efficiently
 Without multi-sampling

 Soft shadows

 Depth of field

 Glossy reflections…

Let’s look more closely at what we are doing…

 For a given pixel:
 Approximate cone

integration
○ Using pre-integrated data

○ With only one ray !

 Voxels can be modeled as
spheres
 Sphere size chosen to match

the cone
○ Linear interpolation between

mipmap levels

 Samples distance d
 Based on voxels/spheres

size

Image

Plane Cubical voxel

footprint

One pixel

footprint

Pixel Color+Alpha

Soft shadows

 Launch secondary rays

 When ray hit object surface

 Same model as primary rays

 MipMap level chosen to

approximate light source cone

 Compatible with our cache

technique

 Resulting integrated opacity

 Approximated occlusion

Light source

Occluder

Depth-Of-Field

 Similarly for depth-
of-field…

 MipMap leveld
based on circle-of-
confusion size

Lens

Image

plane

Apperture

Plane in

focus

Illustration courtesy of GPU Gems

Conclusion

 Unlimited volume data at interactive rates

 Minimal CPU intervention

 Several game techniques can benefit from

our algorithm

Many thanks go to …

 Digisens Corporation

 Rhone-Alpes Explora’doc program

 Cluster of Excellence on Multimodal

Computing and Interaction (M2CI)

 3D-Coat and Rick Sarasin

 Erklaerbar

Any questions ?

But there is a little problem…

 Let’s see more closely what
we are doing:
 Approximate cone integration

○ Using pre-integrated data

 But the integration function is
not the good one !
 Emi/Abs model used along rays

○ But pre-integration is a simple
sum

 Result:
 Occluding objects are

merged/blended

 Virtually not noticeable for little
ray-steps

Image

Plane

Cubical voxel

footprint

One pixel

footprint

Emission/Absorption model

 Equation of transfer
 q : Source term

 Kappa: absorption

What we would like

 Tangential integration: Sum

 Depth integration: Equation of transfer

 But still avoiding multi-sampling

 Is it commutative ? Not sure how far we can

approximate like this…

Possible solutions

 Anisotropic pre-integration
 Similar to early anysotropic

filtering methods

 “2D” mipmapping
○ 1 axis kept unfiltered

 Interpolate between axis at
runtime

 Problems:
 Storage

 Sampling cost !

Possible solutions

 Full Anisotropic pre-integration
 Pre-integrate both parts

○ Light-Transmitance

○ Screen-space average

 Interpolate between axis at
runtime

 Problems:
 Storage !

 We would like to stay
anisotropic…
 Or to reduce storage problem

Possible solutions

 Spheres subtraction

 Problem:

 Sampling cost

 Any better idea ?

Lighting problem

 How to pre-filter lighting ?

 Pre-filter Normals

○ How to store them ?

○ How to interpolate them ?

○ Lobes de normales ?

 Compute gradients on the fly ?

